Practical Business Python

Taking care of business, one python script at a time

Mon 14 October 2019

Binning Data with Pandas qcut and cut

Posted by Chris Moffitt in articles   

When dealing with continuous numeric data, it is often helpful to bin the data into multiple buckets for further analysis. There are several different terms for binning including bucketing, discrete binning, discretization or quantization. Pandas supports these approaches using the cut and qcut functions. This article will briefly describe why you may want to bin your data and how to use the pandas functions to convert continuous data to a set of discrete buckets. Like many pandas functions, cut and qcut may seem simple but there is a lot of capability packed into those functions. Even for more experience users, I think you will learn a couple of tricks that will be useful for your own analysis.

Read more...


Tue 17 September 2019

Happy Birthday Practical Business Python!

Posted by Chris Moffitt in articles   

On September 17th, 2014, I published my first article which means that today is the 5th birthday of Practical Business Python. Thank you to all my readers and all those that have supported me through this process! It has been a great journey and I look forward to seeing what the future holds.

This 5 year anniversary gives me the opportunity to reflect on the blog and what will be coming next. I figured I would use this milestone to walk through a few of the stats and costs associated with running this blog for the past 5 years. This post will not be technical but I am hopeful that my readers as well as current and aspiring bloggers going down this path will find it helpful. Finally, please use the comments to let me know what content you would like to see in the future.

Read more...


Mon 26 August 2019

Combine Multiple Excel Worksheets Into a Single Pandas Dataframe

Posted by Chris Moffitt in articles   

One of the most commonly used pandas functions is read_excel. This short article shows how you can read in all the tabs in an Excel workbook and combine them into a single pandas dataframe using one command.

For those of you that want the TLDR, here is the command:

df = pd.concat(pd.read_excel('2018_Sales_Total.xlsx', sheet_name=None), ignore_index=True)

Read on for an explanation of when to use this and how it works.

Read more...