Practical Business Python

Taking care of business, one python script at a time

Tue 23 August 2016

Lessons Learned from Analyze This! Challenge

Posted by Chris Moffitt in articles   

I recently had the pleasure of participating in a crowd-sourced data science competition in the Twin Cities called Analyze This! I wanted to share some of my thoughts and experiences on the process - especially how this challenge helped me learn more about how to apply data science theory and open source tools to real world problems.

I also hope this article can encourage others in the Twin Cities to participate in future events. For those of you not in the Minneapolis-St. Paul metro area, then maybe this can help motivate you to start up a similar event in your area. I thoroughly enjoyed the experience and got a lot out of the process. Read on for more details.

Read more...



Mon 16 May 2016

Sharing Your Python Case Studies

Posted by Chris Moffitt in articles   

I would like to offer this blog as platform for people to share their success stories with python. Over the past couple of weeks, I have had a handful of conversations related to the topic of how to get python implemented in an organization. In these conversations, I have noticed a lot of common themes related to getting the process started and sustaining it over time.

Read more...


Wed 06 April 2016

Interactive Data Analysis with Python and Excel

Posted by Chris Moffitt in articles   

I have written several times about the usefulness of pandas as a data manipulation/wrangling tool and how it can be used to efficiently move data to and from Excel. There are cases, however, where you need an interactive environment for data analysis and trying to pull that together in pure python, in a user-friendly manner would be difficult. This article will discuss how to use xlwings to tie Excel, Python and pandas together to build a data analysis tool that pulls information from an external database, manipulates it and presents it to the user in a familiar spreadsheet format.

Read more...


Tue 26 January 2016

Learn More About Pandas By Building and Using a Weighted Average Function

Posted by Chris Moffitt in articles   

Pandas includes multiple built in functions such as sum, mean, max, min, etc. that you can apply to a DataFrame or grouped data. However, building and using your own function is a good way to learn more about how pandas works and can increase your productivity with data wrangling and analysis.

The weighted average is a good example use case because it is easy to understand but useful formula that is not included in pandas. I find that it can be more intuitive than a simple average when looking at certain collections of data. Building a weighted average function in pandas is relatively simple but can be incredibly useful when combined with other pandas functions such as groupby.

This article will discuss the basics of why you might choose to use a weighted average to look at your data then walk through how to build and use this function in pandas. The basic principles shown in this article will be helpful for building more complex analysis in pandas and should also be helpful in understanding how to work with grouped data in pandas.

Read more...